Jumat, 13 November 2015

Ukuran Variasi (Dispersi)

Ukuran Variasi (Dispersi)
Ukuran pemusatan (mean, median, modus) yang telah kita pelajari hanya menitikberatkan pada pusat data, tapi tidak memberikan informasi mengenai sebaran nilai pada data tersebut, apakah nilai-nilai data bervariasi ataukah tidak. Terdapat 3 kondisi variasi data, yaitu data yang homogen (tidak bervariasi), data heterogen (sangat bervariasi), dan data yang relatif homogen (tidak begitu bervariasi). Ilustrasinya sebagai berikut:

Data homogen: 50  50  50  50  50 -> rata-rata hitung=50

Data relatif homogen: 50  40  30  60  70 -> rata-rata hitung=50

Data heterogen: 100  40  80  20  10 -> rata-rata hitung=50

Bila kita perhatikan, ketiga kondisi di atas memberikan nilai rata-rata hitung yang sama, yaitu sebesar 50. Namun, kenyataannya rata-rata hitung pada data yang homogen dapat dengan baik mewakili himpunan data keseluruhan. Rata-rata hitung pada data yang relatif homogen cukup baik mewakili himpunan datanya. Sedangkan, rata-rata hitung pada data yang heterogen tidak dapat mewakili dengan baik himpunan data secara keseluruhan. 

Bayangkan jika Anda adalah seorang petualang yang tidak dapat berenang. Pada suatu saat Anda ingin menyeberangi danau, tapi Anda tidak memiliki satupun alat bantuan. Cara satu-satunya adalah dengan berjalan menyelami danau tersebut hingga sampai ke ujung. Informasi yang Anda peroleh hanyalah bahwa rata-rata kedalaman danau tersebut sebesar 1,7 meter. Sedangkan tinggi Anda adalah 1,8 meter. Apakah Anda akan menyeberangi danau begitu saja dan berpikir bahwa Anda tidak akan tenggelam karena tinggi Anda pasti selalu melebihi kedalaman laut??
Seorang statistisi tentunya akan menjawab seperti ini "Tidak! Saya tidak akan begitu saja menyeberangi danau hanya dengan informasi bahwa rata-rata kedalaman laut (1,7 meter) lebih rendah daripada tinggi saya (1,8 meter). Saya akan berpikir ulang untuk melakukan hal itu. Saya tidak yakin bahwa saya tidak akan tenggelam pada semua titik kedalaman. Yang diberikan cuma nilai rata-rata. Saya butuh informasi tentang bagaimana variasi kedalaman danau tersebut. Saya akan menyeberangi danau apabila penyimpangan-penyimpangan kedalaman laut terhadap rata-ratanya tidak membuat saya tenggelam. Bila terjadi hal sebaliknya maka akan lebih baik bagi saya untuk tidak melakukan hal itu."

Terdapat beberapa macam ukuran variasi atau dispersi, misalnya:
Nilai jarak (range), rata-rata simpangan (mean deviation), varians, simpangan baku (standard deviation), dan koefisien variasi (coefficient of variation).

A. Pengukuran Dispersi Data Tidak Dikelompokkan

Nilai Jarak (Range)
Diantara ukuran variasi yang paling sederhana dan paling mudah dihitung adalah nilai jarak (range). Jika suatu himpunan data sudah disusun menurut urutan yang terkecil (X1) sampai dengan yang terbesar (Xn), maka untuk menghitung range digunakan rumus berikut:
Range = Xn - X1

Rata-rata Simpangan (Mean Deviation)
Rata-rata simpangan (RS) adalah rata-rata hitung dari nilai absolut simpangan yang dirumuskan:
Varians
Varians merupakan rata-rata hitung dari kuadrat simpangan setiap pengamatan terhadap rata-rata hitungnya. Varians terbagi dua berdasarkan data yang digunakan, apakah data populasi ataukah data sampel.
Simpangan Baku (Standard Deviation)

Simpangan baku merupakan akar kuadrat positif dari varians. Diantara ukuran dispersi atau variasi, simpangan baku adalah yang paling banyak digunakan sebab memiliki sifat-sifat matematis yang sangat penting dan berguna sekali untuk pembahasan teori dan analisis. Simpangan baku digunakan untuk mengukur penyimpangan atau deviasi masing-masing nilai individu dari suatu himpunan data terhadap rata-rata hitungnya. Satuan simpangan baku mengikuti data aslinya. Seperti pada varians, simpangan baku juga dibagi menjadi simpangan baku populasi dan simpangan baku sampel.
  
B. Pengukuran Dispersi Data Berkelompok
Nilai Jarak (Range)
Untuk data berkelompok, range dapat dihitung dengan dua cara yaitu:
Range =  Nilai Tengah Kelas Akhir - Nilai Tengah Kelas Pertama
atau:
 Range =  Tepi Atas Kelas Akhir - Tepi Bawah Kelas Pertama

Kedua cara di atas akan memberikan hasil yang berbeda. Cara pertama cenderung menghilangkan kasus-kasus ekstrim.

Varians
Untuk data yang berkelompok dan sudah disajikan dalam tabel frekuensi, rumus varians adalah sebagai berikut:

Simpangan Baku (Standard Deviation)
Untuk data yang berkelompok dan sudah disajikan dalam tabel frekuensi, rumus simpangan baku adalah sebagai berikut:

C. Koefisien Variasi (Coefficient of Variation)

Simpangan baku yang baru saja kita bahas mempunyai satuan yang sama dengan satuan data aslinya. Hal ini merupakan suatu kelemahan jika kita ingin membandingkan tingkat homogenitas dua kelompok data yang berbeda satuannya. Misalnya, kelompok pertama adalah data pengeluaran per bulan, sedangkan kelompok kedua adalah data jumlah anggota rumah tangga. Data pengeluaran diukur dalam ratusan ribu bahkan jutaan, sehingga simpangan bakunya juga berkisar ratusan ribu. Sedangkan, jumlah anggota rumah tangga berkisar dalam satuan atau paling banyak puluhan, sehingga simpangan bakunya juga berkisar seperti itu. Artinya, simpangan baku data pengeluaran lebih besar daripada simpangan baku data jumlah anggota rumah tangga. Namun, hal ini belum tentu menunjukkan bahwa data pengeluaran lebih bervariasi (heterogen) daripada data jumlah anggota rumah tangga karena perbedaan tersebut semata-mata dipengaruhi oleh perbedaan satuan data. Untuk keperluan perbandingan dua kelompok nilai yang berbeda satuan, digunakan ukuran Koefisien Variasi (KV), yang bebas dari satuan data asli. Rumusnya adalah sebagai berikut:
 Suatu kelompok data dikatakan lebih homogen daripada kelompok data lainnya apabila nilai koefisien variasinya lebih kecil. Sebaliknya, suatu kelompok data dikatakan lebih bervariasi (heterogen) daripada kelompok data lainnya apabila nilai koefisien variasinya lebih besar.

Ukeran Kemencengan dan Kemiringan Kurva

A.KEMIRIGAN

Kemencengan atau kecondongan (skewness) adalah tingkat ketidaksimetrisan
atau kejauhan simetri dari sebuah distribusi. Sebuah distribusi yang tidak simetris akan
memiliki rata-rata, median, dan modus yang tidak sama besarnya sehingga distribusi akan terkonsentrasi pada salah satu sisi dan kurvanya akan menceng.
Jika distribusi memiliki ekor yang lebih panjang ke kanan daripada yang ke kiri
maka distribusi disebut menceng ke kanan atau memiliki kemencengan positif.
Sebaliknya, jika distribusi memiliki ekor yang lebih panjang ke kiri daripada yang ke
kanan maka distribusi disebut menceng ke kiri atau memiliki kemencengan negatif.
Berikut ini gambar kurva dari distribusi yang menceng ke kanan (menceng
positif) dan menceng ke kiri (menceng negatif).

Untuk mengetahui bahwa konsentrasi distribusi menceng ke kanan ataumenceng ke kiri, dapat digunakan metode-metode berikut :
1.      Koefisien Kemencengan Pearson
Koefisien Kemencengan Pearson merupakan nilai selisih rata-rata dengan modusdibagi simpangan baku. Koefisien Kemencengan Pearson dirumuskan sebagai berikut:

Keterangan :
Sk = koefisien kemencengan pearson
Aoabila secar empiris didapatkan hubungan antarnilai pusat sebagai:

Maka rumus kemenccengan diatas dapat dirubah menjadi:

Jika nilai sk dihubungkan dengan keadaan kurva maka:
1)      Sk =0                     kurva memiliki bentuk simetris
2)      Sk>0                       Nilai-nilai terkonsentrasi pada sisi sebelah kanan ( terletak di sebelah kanan Mo), sehingga kurva memiliki ekor memanjang ke kanan, kurva menceng ke kanan atau menceng positif;

3)      sk< 0                        Nilai-nilai terkonsentrasi pada sisi sebelah kiri (terletak di sebelah kiri Mo), sehingga kurva memiliki ekor memanjang ke kiri, kurva menceng ke kiri atau menceng negatif.

Contoh soal :
Berikut ini adalah data nilai ujian statistik dari 40 mahasiswa sebuah universitas.
Nilai Ujian Statistika pada Semester 2, 2010


a) Tentukan nilai sk dan ujilah arah kemencengannya (gunakan kedua rumus tersebut) !
b) Gambarlah kurvanya !
Penyelesaian:

Oleh karena nilai sk-nya negatif (-0,46) maka kurvanya menceng ke kiri ataumenceng negatif.
b. Gambar kurvanya :
                                                                            
2. Koefisien Kemencengan Bowley
Koefisien kemencengan Bowley berdasarkan pada hubungan kuartil-kuartil (Q1,Q2 dan Q3) dari sebuah distribusi. Koefisien kemencengan Bowley dirumuskan :
Koefisien kemencengan Bowley sering juga disebut Kuartil Koefisien
Kemencengan.Apabila nilai skB dihubungkan dengan keadaan kurva, didapatkan :
1) Jika Q3 – Q2 > Q2 – Q1 maka distribusi akan menceng ke kanan atau menceng secara
positif.
2) Jika Q3 – Q2 < Q2 – Q1 maka distribusi akan menceng ke kiri atau menceng secara
negatif.
3) skB positif, berarti distribusi mencengke kanan.
4) skB negatif, nerarti distribusi menceng ke kiri.
5) skB = ± 0,10 menggambarkan distribusi yang menceng tidak berarti dan skB> 0,30
menggambarkan kurva yang menceng berarti.
Contoh soal :
Tentukan kemencengan kurva dari distribusi frekuensi berikut :
Nilai Ujian Matematika Dasar I dari 111 mahasiswa, 1997

Penyelesaian :
Kelas Q1 = kelas ke -3 

Karena skB negatif (=−0,06) maka kurva menceng ke kiri dengan kemencengan yang berarti.
3. Koefisien Kemencengan Persentil
Koefisien Kemencengan Persentil didasarkan atas hubungan antar persentil (P90,P50 dan P10) dari sebuah distribusi. Koefisien Kemencengan Persentil dirumuskan :\
Keterangan :
skP= koefisien kemecengan persentil , P = persentil
4. Keofisien Kemencengan Momen
Koefisien Kemencengan Momen didasarkan pada perbandingan momen ke-3
dengan pangkat tiga simpang baku. Koefisien menencengan momen dilambangkan
dengan α3. Koefisien kemencengan momen disebut juga kemencengan relatif.
Apabila nilai α3dihubungkan dengan keadaan kurva, didapatkan :
1) Untuk distribusi simetris (normal), nilai α3= 0,
2) Untuk distribusi menceng ke kanan, nilai α3 = positif,
3) Untuk distribusi menceng ke kiri, nilai α3= negatif,
4) Menurut Karl Pearson, distribusi yang memiliki nilai α3> ±0,50 adalah distribusi
yang sangat menceng
5) Menurut Kenney dan Keeping, nilai α3 bervariasi antara ± 2 bagi distribusi yangmenceng.
Untuk mencari nilaiα3, dibedakan antara data tunggal dan data berkelompok.
a. Untuk data tunggal
Koefisien Kemencengan Momen untuk data tunggal dirumuskan :

α3 = koefisien kemencengan momen
b. Untuk data berkelompok
Koefisien kemencengan momen untuk data berkelompok dirumuskan :

B. KERUNCINGAN ATAU KURTOSIS
Keruncingan atau kurrtosis adalah tingkat kepuncakan dari sebuah distribusi yangbiasanya diambil secararelatif terhadap suatu distribusi normal.Berdasarkan keruncingannya, kurva distribusi dapat dibedakan atas tiga macam, yaitu sebagai berikut :
1) Leptokurtik
Merupakan distribusi yang memiliki puncak relatif tinggi.
2) Platikurtik
Merupakan distribusi yang memiliki puncak hampir mendatar
3) Mesokurtik
Merupakan distribusi yang memiliki puncak tidak tinggi dan tidak mendatar
Bila distribusi merupakan distribusi simetris maka distribusi mesokurtik ianggap sebagai distribusi normal.

Untuk mengetahui keruncingan suatu distribusi, ukuran yang sering        digunakan
adalah koefisien kurtosis persentil.
1. Koefisien keruncingan
Koefisien keruncingan atau koefisien kurtosis dilambangkan dengan a4 (alpha 4).
Jika hasil perhitungan koefisien keruncingan diperoleh :
1) Nilai lebih kecil dari 3, maka distribusinya adalah distribusi pletikurtik
2) Nilai lebih besar dari 3, maka distibusinya adalah distribusi leptokurtik
3) Nilai yang sama dengan 3, maka distribusinya adalah distribusi               mesokurtik
Untuk mencari nilai koefisien keruncingan, dibedakan antara data    tunggal dan
data kelompok.
a.        Untuk data tunggal
b.      

Tentukan keruncingan kurva dari data 2, 3, 6, 8, 11 !
Penyelesaian :

Karena nilainya 1,08 (lebih kecil dari 3) maka distribusinya adalah distribusi platikurtik.
c.        Untuk data kelompok



2.      Koefisien Kurtosis Persentil
Koefisien Kurtosis Persentil dilambangkan dengan K (kappa). Untuk distribusinormal, nilai K = 0,263. Koefisien Kurtosis Persentil, dirumuskan :

Contoh soal :
Berikut ini disajikan tabel distribusi frekuensi dari tinggi 100 mahasiswa
universitas XYZ.
a. Tentukan koefisien kurtosis persentil (K) !
b. Apakah distribusinya termasuk distribusi normal !
Tinggi Mahasiswa Universitas XYZ









Tidak ada komentar:

Posting Komentar